S.N.Bose National Centre for Basic Sciences >
Library >
Publications >
2012 >

Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/13

Title: Strong quantum violation of the gravitational weak equivalence principle by a non-Gaussian wave packet
Authors: Chowdhury, P
Home, D
Majumdar, A S
Mousavi, S V
Mozaffari, M R
Sinha, S
Issue Date: 2012
Publisher: Class. Quant. Grav.
Abstract: The weak equivalence principle of gravity is examined at the quantum level in two ways. First, the position detection probabilities of particles described by a non-Gaussian wave packet projected upwards against gravity around the classical turning point and also around the point of initial projection are calculated. These probabilities exhibit mass dependence at both these points, thereby reflecting the quantum violation of the weak equivalence principle. Second, the mean arrival time of freely falling particles is calculated using the quantum probability current, which also turns out to be mass dependent. Such a mass dependence is shown to be enhanced by increasing the non-Gaussianity parameter of the wave packet, thus signifying a stronger violation of the weak equivalence principle through a greater departure from Gaussianity of the initial wave packet. The mass dependence of both the position detection probabilities and themean arrival time vanishes in the limit of largemass. Thus, compatibility between theweak equivalence principle and quantum mechanics is recovered in the macroscopic limit of the latter. A selection of Bohm trajectories is exhibited to illustrate these features in the free fall case.
URI: http://hdl.handle.net/123456789/13
Appears in Collections:2012

Files in This Item:

File Description SizeFormat
Strong quantum violation.pdf740.78 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback