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Abstract
The quantum analogue of Galileo’s leaning tower experiment is revisited using
wave packets evolving under the gravitational potential. We first calculate the
position detection probabilities for particles projected upwards against gravity
around the classical turning point and also around the point of initial projection,
which exhibit mass dependence at both these points. We then compute the mean
arrival time of freely falling particles using the quantum probability current,
which also turns out to be mass dependent. The mass dependence of both the
position detection probabilities and the mean arrival time vanish in the limit of
large mass. Thus, compatibility between the weak equivalence principle and
quantum mechanics is recovered in the macroscopic limit of the latter.

1. Introduction

As a consequence of the equality of gravitational and inertial mass, all classical test bodies
fall with an equal acceleration independently of their mass or constituent in a gravitational
field. Historically, the first experimental study to probe this feature was conceived by Galileo
with test bodies in free fall from the leaning tower of Pisa [1]. In modern times several
tests have been performed with pendula or torsion balances leading to extremely accurate
confirmations of the equality of gravitational and inertial masses [2]. Though most of these
schemes consider only classical test bodies, there exist indications about the validity of the
equality of gravitational and inertial masses even for quantum-mechanical particles using
the gravity-induced interference experiments [3, 4]. The universal character of the law of
gravitation, however, has a much richer structure than the above equality, as embodied in the
principle of equivalence in its various versions.
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There are three statements of the equivalence principle which are equivalent according
to classical physics but are logically distinct. Holland [5] emphasized the importance of
separating them clearly in order to discuss their quantum analogues: (i) inertial mass is equal
to gravitational mass; mi = mg = m. As mentioned earlier, the compatibility of this equality
with quantum mechanics has been verified in several experiments [3, 4]. (ii) With respect
to the mechanical motion of particles, a state of rest in a sufficiently weak, homogeneous
gravitational field is physically indistinguishable from a state of uniform acceleration in a
gravity-free space. A natural quantum analogue of this statement is [6] ‘The laws of physics
are the same in a frame with gravitational potential V = −mgz as in a corresponding frame
lacking this potential but having a uniform acceleration g instead’. This can be verified in
quantum mechanics by transforming the Schrödinger wavefunction for a quantum particle in a
gravitational potential to that in an accelerated frame lacking this potential [7]. Predictions of
the Schrödinger equation in a noninertial frame have been shown to be experimentally observed
[6]. (iii) All sufficiently small test bodies fall freely with an equal acceleration independently of
their mass or constituent in a gravitational field. To obtain its quantum analogue this statement
might be replaced by some principle such as the following [5]: ‘The results of experiments in
an external potential comprising just a (sufficiently weak, homogeneous) gravitational field,
as determined by the wavefunction, are independent of the mass of the system’. The status of
this last version of the equivalence principle for quantum-mechanical entities is the subject of
investigation of the present paper. We shall henceforth call the quantum analogue of version
(iii) as the weak equivalence principle of quantum mechanics (WEQ).

The compatibility between WEQ and quantum mechanics is an interesting issue which
is yet to be completely settled. This issue was elaborately discussed by Greenberger [8].
Evidence supporting the violation of WEQ already exists in interference phenomena associated
with the gravitational potential in neutron and atomic interferometry experiments [3, 4] where
the observable interference patterns are mass dependent. Further, at the theoretical level, on
applying quantum mechanics to the problem of a particle bound in an external gravitational
potential it is seen that the radii, frequencies and binding energy depend on the mass of
the bound particle [7–9]. The possibility of quantum violation of WEQ is also discussed
in a number of other papers, for instance using neutrino mass oscillations in a gravitational
potential [10].

Recently, Davies [11] has provided a particular quantum-mechanical treatment of the
violation of WEQ for a quantum particle whose time of flight is proposed to be measured
by a model quantum clock [12]. This model of quantum clock actually measures the phase
change of the wavefunction during the particle’s passage through a specified spatial region. In
this treatment, Davies considered a variant of the simple Galileo experiment where particles
of different mass are projected vertically in a uniform gravitational field. Quantum particles
are able to tunnel into the classically forbidden region beyond the classical turning point and
the tunnelling depth depends on the mass. One might therefore expect a small but significant
mass-dependent ‘quantum delay’ in the return time. Such a delay would represent a violation
of WEQ. Using the concept of the Peres clock [12] the time of flight is calculated from the
stationary state wavefunction for the quantum particle moving in a gravitational potential.
However, this violation is not found far away from the classical turning point of the particle
trajectory. Within a distance of roughly one de Broglie wavelength from the classical turning
point there are significant quantum corrections to the turn-around time (i.e., the time taken
by the particle to reach its maximum height), including the possibility of a mass-dependent
delay due to the penetration of the classically forbidden region by the evanescent part of the
wavefunction. Thus, this quantum ‘smearing’ of the WEQ is restricted to distances within the
usual position uncertainty of a quantum particle.



In another relevant gedanken experimental scheme Viola and Onofrio [13] have studied
the free fall of a quantum test particle in a uniform gravitational field. Using Ehrenfest’s
theorem for obtaining the average time of flight for a test mass, if one takes gravitational
mass to be equal to the inertial mass then the mean time taken by the particle to traverse
a distance H under free fall is 〈t〉 = √

2H/g which is exactly equal to the classical result.
Viola and Onofrio made a rough estimate of the fluctuations around this mean value using a
semiclassical approach with the initial wavefunction taken as a Schrödinger cat state. This
fluctuation around the mean time of flight was shown to be dependent on the mass of the
particle. However, one may note that the very definition of the time of flight or arrival time of
a quantum particle is the subject of much debate, and there exists no unique or unambiguous
definition that is universally applicable and also empirically well tested [14].

As a sequel to these works by Viola and Onofrio [13] and Davies [11], we study the issue of
violation of WEQ in the present paper from a different perspective. Note that the gravitational
equivalence principle has been historically formulated at the level of single particles, which
is quite appropriate within the domain of classical mechanics. However, the formulation of
the quantum counterpart is experimentally verifiable only at the level of an ensemble evolving
through Schrödinger dynamics. Following this line of argument, it seems that for a quantum-
classical comparison to be meaningful, even the classical results have to be stated in the
framework of a distribution of particles undergoing a classical dynamical evolution [15]. To
this end we consider an ensemble of identical quantum particles represented by a Gaussian
wave packet which evolves under the gravitational potential. We make use of the quantum
probability current in computing the mean arrival time for a wave packet under free fall. The
probability current approach [16] towards calculating the mean arrival time for an ensemble
of quantum particles is conceptually sound and also well suited for our present investigation
of the violation of WEQ.

The plan of this paper is as follows. In the following section, we compute the position
detection probability for atomic and molecular mass particles represented by a Gaussian wave
packet that is projected upwards against gravity around two different points; one around the
classical turning point and the other around a region of the initial projection point after it returns
back. We show an explicit mass dependence of the position probability computed around both
these points, thus indicating violation of WEQ not only at the turning point of the classical
trajectory, but also far away from it around the initial projection point. We then compute the
mean arrival time for a wave packet under free fall in section 3 Here we consider the case when
the particles are dropped from a height with zero initial velocity. We observe an explicit mass
dependence of the mean arrival time at an arbitrary detector location indicating once again
the manifest violation of WEQ. Another issue of interest as discussed by Greenberger [9] is to
understand whether compatibility with WEQ is recovered in the macroscopic limit of quantum
mechanics. We show that using the quantum probability current approach of obtaining the
mean arrival time [16] of an ensemble of particles, the validity of WEQ emerges smoothly
in the limit of large mass. We conclude with a brief summary of our results in section 4
highlighting the key differences of our approach with the earlier works.

2. Mass dependence of position detection probabilities

A beam of quantum particles with an initial Gaussian distribution is considered to be projected
upwards against gravity. Subsequently, the position probability distribution is calculated
within an arbitrary region either around the classical turning point of the potential V = mggz

or away from the turning point around the region from where the particles were projected.
Such an observable quantity turns out to be mass dependent, as seen below.



Let us consider particles of different inertial masses that are thrown upwards against
gravity with the same initial mean position and mean velocity. The initial states of the
quantum particles can be represented by a one-dimensional Gaussian wavefunction given by

ψj(z, t = 0) = (
2πσ 2

0

)−1/4
exp(ikj z) exp

(
− z2

4σ 2
0

)
(1)

peaked at z = 0 with the initial group velocity (defined for the above wavefunction evolving
through the Schrödinger equation as u = (dωj )/(dkj ) with ωj and kj being the angular
frequency and wavenumber, respectively, for the j th particle) given by u = h̄kj

/
m

j

i , where

m
j

i is the inertial mass of the j th particle.
In order to perform an ideal free fall experiment for quantum particles having different

inertial masses m1
i , m

2
i , . . . etc (with suffix i representing the inertial mass, and with m1

i �= m2
i

etc), one has to specify an initial preparation in such a way that any difference in the motion
during the free fall must be ascribed to the effect of gravity. Now, within the classical Hamilton
picture the Galileian prescription for initial positions and velocities fixes the ratio between
the initial momenta in a well-defined way, i.e., p1

0

/
p2

0 = m1
i

/
m2

i , etc. Following [13], we
extend such a prescription to the quantum case, of course keeping in mind that the Heisenberg
uncertainty principle forbids the simultaneous definition of the initial position and momentum
for each particle. If ψ1 and ψ2 denote the initial wavefunctions for particles 1 and 2 in the
Schrödinger picture, the quantum analogue of the situation can be achieved by stipulating the
conditions

〈 ẑ 〉ψ1 = 〈 ẑ 〉ψ2 = 0,
〈p̂z〉ψ1

m1
i

= 〈p̂z〉ψ2

m2
i

≡ u (2)

where 〈 ẑ 〉ψ and 〈p̂z〉ψ denote the expectation values for position and momentum operators,
respectively (confining to a one-dimensional representation along the vertical z direction).
The probabilistic interpretation underlying quantum mechanics allows us only to speak
of probability distributions, for instance, characterized by mean initial conditions such as
equation (2), as opposed to the sharply-defined values for the relevant classical observables.

With the above prescription one can consider the time evolution of the initial state under
the potential V = m

j
ggz, where m

j
g is the gravitational mass of the j th particle. At any

subsequent time t the Schrödinger time evolved wavefunction ψj (z, t) is given by
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where st = σ0
(
1 + ih̄t/2m

j

i σ
2
0

)
. We see even if one takes m

j

i = m
j
g , i.e., equates the inertial

mass with the gravitational mass, the observable position probability density |ψj(z, t)|2 will
have an explicit mass dependence

|ψj(z, t)|2 = (2πσ 2)−1/2 exp

[
−

(
z − ut + 1

2gt2
)2

2σ 2

]
(4)

coming from the spreading of the wave packet given by σ = σ0
(
1 + h̄2t2

/
4m

j

i

2
σ 4

0

)1/2
which

is mass dependent.



103 cm s−1, σ0 = 10−3 cm, ε = σ0, t = t2 = 2u/g s.

Mass (m
j

i ) Probability

System in (amu) P1(m
j

i )

H 1.00 0.0012
H2 2.00 0.0024
Li 6.94 0.0085
Be 9.01 0.0111
C 12.01 0.0148
Ag 107.87 0.1305
C60 720.00 0.5428
Protein molecule 7.2 × 104 0.6826
Heavier molecule 7.2 × 107 0.6826

The peak of the wave packet follows the classical trajectory and it has a turning point at
the time t = t1 = u/g at z = zc = ut1. At a later time t = t2 = 2u/g, when the peak of the
wave packet comes back to its initial position z = 0, if we compute the probability of finding
particles P1

(
m

j

i

)
within a very narrow region (−ε to +ε) around this point z = 0 then that

probability is found to be a function of mass and is given by

P1
(
m

j

i

) =
∫ +ε

−ε

|ψj(z, t2)|2 dz. (5)

This effect of the mass dependence of the probability occurs essentially because the spreading
of the wave packet under gravitational potential is different for particles of different masses.
We explicitly estimate this effect for different molecular mass particles. A different set of
mass dependent probabilities P1

(
m

j

i

)
may be obtained by taking a different value of the width

σ0 of the initial wave packet. In table 1, it is shown numerically how the probability of
finding the particles P1

(
m

j

i

)
around the mean initial projection point (z = 0) changes with

the variation of mass for an initial Gaussian position distribution. We note that for further
increase in mass of the particle beyond that of a protein molecule, the change in the probability
P1

(
m

j

i

)
gets negligibly small, or in other words the mass dependence of the probability gets

saturated.
We then compute the probability of finding particles P2

(
m

j

i

)
at t = t1 = u/g within

a very narrow detector region (−ε to +ε) around a point which is the classical turning point
z = zc = ut1 for the particle. P2

(
m

j

i

)
is also a function of mass and is given by

P2
(
m

j

i

) =
∫ +ε

−ε

|ψj(z, t1)|2 dx. (6)

In table 2, it is numerically shown how the probability of finding the particles P2
(
m

j

i

)
around

the classical turning point changes with the variation of mass for a initial Gaussian position
distribution. As in the previous case, we again find that the mass-dependence of the probability
P2

(
m

j

i

)
for finding the particle gets saturated in the limit of large mass.

The question of the quantum-classical correspondence [17] could be elaborated further
within the present context by constructing a suitable classical phase-space distribution
matching with the initial quantum distribution. It may be interesting to note that if one were to
work with a classical ensemble of particles with an initial phase-space distribution taken as the
product of two Gaussian functions matching the initial position distribution |ψ(z, 0)|2 and its
Fourier transform (say, |φ(p, 0)|2 representing the initial momentum distribution), essentially

Table 1. Mass dependence of the probability at the initial projection point. We take u =



Table 2. Mass dependence of the probability at the turning point. We take u = 103 cm s−1,

σ0 = 10−3 cm, ε = σ0, t = t1 = u/g s.

Mass (m
j

i ) Probability

System in (amu) P2(m
j

i )

H 1.00 0.0024
H2 2.00 0.0049
Li 6.94 0.0171
Be 9.01 0.0222
C 12.01 0.0296
Ag 107.87 0.2522
C60 720.00 0.7277
Protein molecule 7.2 × 104 0.7978
Heavier molecule 7.2 × 107 0.7978

the same results attributed to ensemble spread are obtained through the classical Liouville
evolution for Gaussian distributions [15]. Note also that within the present context the use
of the Wigner function does not lead to any new insights since for the linear gravitational
potential the Wigner function reproduces classical results.

3. Mass dependence of mean arrival time and the classical limit

Now let us pose the problem in a different way. We consider the quantum particle prepared
in the initial state given by equation (1) satisfying equation (2) and with u = 0. The particle
is subjected to free fall under gravity. We then ask the question as to when does the quantum
particle reach a detector located at z = Z. In classical mechanics, a particle follows a definite
trajectory; hence the time at which a particle reaches a given location is a well-defined concept.
On the other hand, in standard quantum mechanics, the meaning of arrival time has remained
rather obscure. There exists an extensive literature on the treatment of arrival time distribution
in quantum mechanics [14]. One possible internally consistent approach of defining the arrival
time probability distribution is through the quantum probability current [16] which we employ
in the present investigation. The probability current approach for computation of the mean
arrival time of a quantum ensemble not only provides an unambiguous definition of arrival
time at the quantum mechanical level [16, 18, 19], but also addresses the issue of obtaining
the proper classical limit of the time of flight of massive quantum particles [15].

It is relevant to observe here that though the Schrödinger probability current is not uniquely
defined within nonrelativistic quantum mechanics, but for, say, particles with spin-1/2, it has
been shown by Holland [18] by taking the nonrelativistic limit of the Dirac probability current
that the quantum probability current contains a term that is spin dependent. The arrival time
distribution is then uniquely formulated using the probability current obtained by taking the
nonrelativistic limit of the corresponding relativistic current. It was shown using the explicit
example of a Gaussian wave packet that the spin dependence of the probability current leads
to the spin dependence of the mean arrival time for free particles [19]. However, for the case
of massive spin-0 particles it has been shown recently by taking the nonrelativistic limit of
Kemmer equation [20] that the unique probability current is given by the Schrödinger current
[21]. Hence, the Schrödinger probability current density can be used to define a precise and
logically consistent arrival time distribution for spin-0 quantum particles, which is relevant for
the present analysis.
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Figure 1. The variation of mean arrival time with mass (in atomic mass unit) at a detector location
Z for an initial Gaussian position distribution. We take σ0 = 10−4 cm, Z = 10−2 cm.

The expression for the Schrödinger probability current density J (Z, t) at the detector
location z = Z for the time evolved state is calculated using the initial state prepared in the
Gaussian form given by equation (1) and satisfying equation (2). The particle falls freely
under gravity along the −̂z direction from the initial peak position at z = 0 with u = 0 and
J (Z, t) is given by

J (Z, t) = ρ(Z, t) v(Z, t) (7)

where

ρ(Z, t) = (2πσ 2)−1/2 exp

[
−

(
Z − 1

2gt2
)2

2σ 2

]
(8)

and

v(Z, t) =
[
gt +

h̄2t

4m
j

i

2
σ 2

0 σ 2
(Z − gt2/2)

]
. (9)

Taking the modulus of the probability current density as determining the arrival time
distribution [16], the mean arrival time τ at a particular detector location is computed for an
ensemble of particles with an initial Gaussian position distribution falling freely under gravity.
Then this observable quantity τ is given by

τ
(
m

j

i

) =
∫ ∞

0 |J (Z, t)|t dt∫ ∞
0 |J (Z, t)| dt

(10)

which is actually the first temporal moment of the modulus of the probability current density.

Since σ = |st | = σ0
(
1 + h̄2t2

/
4m

j

i

2
σ 4

0

)1/2
is mass dependent, it is seen from equations (7)–

(9) that J (Z, t) is mass dependent too. Hence the mean arrival time τ calculated by using
equation (10) for the Gaussian wave packets corresponding to different atomic mass particles
falling freely under gravity is also mass dependent.

In figure 1, we depict the variation with mass of the mean arrival time at a particular
detector location for an ensemble of particles under free fall. The initial conditions are taken as
〈z〉0 = 0 and 〈p〉0 = 0, where 〈z〉0 and 〈p〉0 are the position and momentum expectation values
at t = 0. One should note that though the integral in the numerator of equation (10) formally



diverges, several techniques have been employed in the literature ensuring rapid fall off for the
probability distributions asymptotically [22], so that convergent results are obtained for the
integrated arrival time. For our present purposes it is sufficient to employ the simple strategy
of taking a cut-off (t = T ) in the upper limit of the time integral with T = √

2(Z + 3σT )/g

where σT is the width of the wave packet at time T. Thus, our computations of the arrival time
are valid up to the 3σ level of spread in the wavefunction.

One can see from figure 1 that in the limit of large mass the mean arrival time τ

asymptotically approaches the classical result which is mass independent. As was discussed
by Greenberger [9], the question as to whether compatibility of the weak equivalence principle
with quantum mechanics emerges in the classical limit is clouded by conceptual intricacies
of obtaining the proper macroscopic limit of quantum mechanics. We see here again that
the probability current approach offers an effective and consistent scheme for obtaining the
macroscopic limit of the arrival time distribution by continuously increasing the mass of
the particle. We find that the classical value of mean arrival time is obtained as the mass
dependence vanishes in the limit of large mass. We are thus able to show that compatibility of
the weak equivalence principle with quantum mechanics emerges in a smooth manner in the
macroscopic limit.

4. Summary and conclusions

To summarize, we have revisited a gedanken version of the quantum analogue of Galileo’s
leaning tower experiment with atomic and molecular mass wave packets falling freely under
gravity. Our results of mass dependence of the position detection probabilities and the arrival
time distribution clearly indicate the manifest violation of the quantum analogue [5] of the
weak equivalence principle (WEQ) stated earlier. Davies [11] provided a particular quantum-
mechanical treatment of the violation of WEQ using the concept of the Peres clock [12] where
the time of flight is calculated from the stationary state wavefunction for the quantum particle
moving in a gravitational potential. However, this violation was not found far away from the
classical turning point of the particle trajectory and was restricted to distances within the usual
position uncertainty of the quantum particle. A semiclassical approach based on the Ehrenfest
theorem yields the classical result for the average time of flight and mass dependence for
fluctuations around the average [13]. Our approach, on the other hand, is based on the
quantum probability current approach and leads to the mass dependence of the arrival
time distribution computed around any position along the trajectory of the particles. The
predicted violation of WEQ in this case is, in principle, observable for molecular mass
particles.

We have further discussed the issue of compatibility of WEQ with the macroscopic limit
of quantum mechanics [9]. For this purpose, it is essential to consider the evolution of an
ensemble of particles that we have done using a Gaussian wave packet. We see that the
variation of the detection probability with mass disappears in the limit of large mass of the
freely falling particles, as is expected for classical objects. This saturation of the detection
probability is also reflected in the mean arrival time defined through the quantum probability
current, which approaches the classical result in a continuous manner with the increase of
mass. We have seen that the compatibility of WEQ with quantum mechanics can be restored
in the classical limit within this framework for particles falling freely under gravity. Our
analysis has been carried out using a minimum uncertainty Gaussian wave packet. Following
our approach, it should be interesting to investigate the issue of compatibility of the weak
equivalence principle with quantum mechanics in the macroscopic limit for other types of
Gaussian and non-Gaussian wave packets.



Finally, we would like to re-emphasize that our approach of demonstrating the quantum
violation of the weak equivalence principle is different from that of other examples in that
using our scheme it should be possible to predict the specific mass range of molecules where an
explicit violation of WEQ may occur either through the measurement of the position detection
probabilities, or through the mean arrival time. Our approach is capable of providing a precise
prediction of the quantum violation of the weak equivalence principle in the relevant mass
ranges as one goes from the micro to macro limit, and is thus amenable to experimental
verification, thereby complementing other works probing the transition between the quantum
and the classical domains [23]. We conclude by stressing that it should be worthwhile to
compute the results in our example using other approaches [14] to calculate the quantum
arrival time distribution, and compare such results with those of the present paper. Such
studies can further motivate the formulation of actual experiments to decide which particular
approach is empirically tenable for description of the arrival time distribution of quanta in the
gravitational potential.
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