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We obtain, using a reformulation of the tunneling mechanism, the Hawking black body spectrum with
the appropriate temperature for a black hole. This is a new result in the tunneling formalism of discussing
Hawking effect. Our results are given for a spherically symmetric geometry that is asymptotically flat.

a b s t r a c t
1. Introduction

After Hawking’s observation [1] that black holes radiate, there
were several approaches [2–7] to study this effect. A particularly
intuitive and widely used approach is the tunneling mechanism
[4,5]. The essential idea is that a particle–antiparticle pair forms
close to the event horizon which is similar to pair formation in an
external electric field. The ingoing mode is trapped inside the hori-
zon while the outgoing mode can quantum mechanically tunnel
through the event horizon. It is observed at infinity as a Hawking
flux. So this effect is totally a quantum phenomenon and the pres-
ence of an event horizon is essential. However, in the literature
[4,5,8–12], the analysis is confined to obtention of the Hawking
temperature only by comparing the tunneling probability of an
outgoing particle with the Boltzmann factor. There is no discussion
of the spectrum. Hence it is not clear whether this temperature
really corresponds to the temperature of a black body spectrum as-
sociated with black holes. One has to take recourse to other results
to really justify the fact that the temperature found in the tunnel-
ing approach is indeed the Hawking black body temperature. In
this sense the tunneling method, presented so far, is incomplete.

In this Letter we rectify this shortcoming. Using density matrix
techniques we will directly find the spectrum from a reformulation
of the tunneling mechanism. For both bosons and fermions we ob-
tain a black body spectrum with a temperature that corresponds
to the familiar semiclassical Hawking expression. Our results are
valid for black holes with spherically symmetric geometry. Finally,
we show the connection of our formulation with usual tunneling
formulations [4,5] by exploiting the principle of detailed balance.
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2. General formulations

Consider a black hole characterised by a spherically symmetric,
static space–time and asymptotically flat metric of the form

ds2 = F (r)dt2 − dr2

F (r)
− r2 dΩ2, (1)

whose event horizon r = rH is defined by F (rH ) = 0. For discussing
Hawking effect by tunneling, the radial trajectory is relevant [4,5].
We therefore consider only the (r − t) sector of the metric (1).

Now consider the massless Klein–Gordon equation gμν∇μ∇νφ

= 0 which, in the r − t sector, reduces to

− 1

F (r)
∂2

t φ + F ′(r)∂rφ + F (r)∂2
r φ = 0 (2)

in the black hole space–time (1). Taking the standard WKB ansatz

φ(r, t) = e− i
h̄ S(r,t) (3)

and substituting the expansion for S(r, t)

S(r, t) = S0(r, t) +
∞∑

i=1

h̄i Si(r, t) (4)

in (2) we obtain, in the semiclassical limit (i.e. h̄ → 0),

∂t S0(r, t) = ±F (r)∂r S0(r, t). (5)

This is the usual semiclassical Hamilton–Jacobi equation [4,9]
which can also be obtained in a similar way from Dirac [10] or
Maxwell equations [11]. Also, this equation is a natural conse-
quence if the chirality (holomorphic) condition on the scalar field
with the WKB ansatz (3) is imposed with the +(−) solutions
standing for the left (right) movers [14].

Now since the metric (1) is stationary, it has a timelike Killing
vector. Therefore we choose an ansatz for S0(r, t) as

S0(r, t) = ωt + S̃0(r), (6)
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where ω is the conserved quantity corresponding to the timelike
Killing vector. This is identified as the effective energy experienced
by the particle at asymptotic infinity. Substituting this in (5) a so-
lution for S̃0(r) is obtained. Inserting this back in (6) yields,

S0(r, t) = ω(t ± r∗), r∗ =
∫

dr

F (r)
. (7)

For further discussions it is convenient to introduce the sets of
null tortoise coordinates which are defined as

u = t − r∗, v = t + r∗. (8)

It is important to note that expressing (7) in these coordinates,
defined inside and outside the event horizon, and then substituting
in (3) one can obtain the right and left modes for both sectors:

(
φ(R)

)
in = e− i

h̄ ωuin ,
(
φ(L)

)
in = e− i

h̄ ωv in ,

(
φ(R)

)
out = e− i

h̄ ωuout ,
(
φ(L)

)
out = e− i

h̄ ωvout . (9)

Now in the tunneling formalism a virtual pair of particles is
produced in the black hole. One member of this pair can quantum
mechanically tunnel through the horizon. This particle is observed
at infinity while the other goes towards the center of the black
hole. While crossing the horizon the nature of the coordinates
changes. This can be accounted by working with Kruskal coordi-
nates which are viable on both sides of the horizon. The Kruskal
time (T ) and space (X ) coordinates inside and outside the horizon
are defined as [13]

T in = eK (r∗)in cosh(Ktin), Xin = eK (r∗)in sinh(Ktin),

Tout = eK (r∗)out sinh(Ktout), Xout = eK (r∗)out cosh(Ktout), (10)

where, as usual, K = F ′(rH )
2 is the surface gravity of the black hole.

These two sets of coordinates are connected by the relations

tin → tout − i
π

2K
, (r∗)in → (r∗)out + i

π

2K
, (11)

so that, with this mapping, T in → Tout and Xin → Xout. In partic-
ular, for the Schwarzschild metric, K = 1

4M so that the extra term
connecting tin and tout is given by (−2π iM). Such a result (for the
Schwarzschild case) was earlier discussed in [12]. Now, following
the definition (8), we obtain the relations connecting the null co-
ordinates defined inside and outside the horizon,

uin = tin − (r∗)in → uout − i
π

K
,

v in = tin + (r∗)in → vout. (12)

Under these transformations the inside and outside modes are con-
nected by

(
φ(R)

)
in → e− πω

h̄K
(
φ(R)

)
out,(

φ(L)
)

in → (
φ(L)

)
out. (13)

Using the above transformations the density matrix operator for an
observer outside the event horizon will be constructed in the next
section which will lead to the black body spectrum and thermal
flux corresponding to the semiclassical Hawking temperature.

3. Black body spectrum and Hawking flux

Now to find the black body spectrum and Hawking flux, we
first consider n number of non-interacting virtual pairs that are
created inside the black hole. Each of these pairs is represented by
the modes defined in the first set of (9). Then the physical state of
the system, observed from outside, is given by
|Ψ 〉 = N
∑

n

∣∣n(L)

in

〉 ⊗ ∣∣n(R)

in

〉 → N
∑

n

e− πnω
h̄K

∣∣n(L)
out

〉 ⊗ ∣∣n(R)
out

〉
, (14)

where use has been made of the transformations (13). Here |n(L)
out〉

corresponds to n number of left going modes and so on while N
is a normalization constant which can be determined by using the
normalization condition 〈Ψ |Ψ 〉 = 1. This immediately yields

N = 1

(
∑

n e− 2πnω
h̄K )1/2

. (15)

The above sum will be calculated for both bosons and fermions.
For bosons n = 0,1,2,3, . . . , whereas for fermions n = 0,1. With
these values of n we obtain the normalization constant (15) as

N(boson) = (
1 − e− 2πω

h̄K
) 1

2 , (16)

N(fermion) = (
1 + e− 2πω

h̄K
)− 1

2 . (17)

Therefore the normalized physical states of the system for bosons
and fermions are, respectively,

|Ψ 〉(boson) = (
1 − e− 2πω

h̄K
) 1

2
∑

n

e− πnω
h̄K

∣∣n(L)
out

〉 ⊗ ∣∣n(R)
out

〉
, (18)

|Ψ 〉(fermion) = (
1 + e− 2πω

h̄K
)− 1

2
∑

n

e− πnω
h̄K

∣∣n(L)
out

〉 ⊗ ∣∣n(R)
out

〉
. (19)

From here on our analysis will be only for bosons since for
fermions the analysis is identical. For bosons the density matrix
operator of the system is given by

ρ̂(boson) = |Ψ 〉(boson)〈Ψ |(boson)

= (
1 − e− 2πω

h̄K
)

×
∑
n,m

e− πnω
h̄K e− πmω

h̄K
∣∣n(L)

out

〉 ⊗ ∣∣n(R)
out

〉〈
m(R)

out

∣∣ ⊗ 〈
m(L)

out

∣∣. (20)

Now tracing out the ingoing (left) modes we obtain the density
matrix for the outgoing modes,

ρ̂
(R)

(boson)
= (

1 − e− 2πω
h̄K

)∑
n

e− 2πnω
h̄K

∣∣n(R)
out

〉〈
n(R)

out

∣∣. (21)

Therefore the average number of particles detected at asymptotic
infinity is given by

〈n〉(boson) = trace
(
n̂ρ̂

(R)

(boson)

)
= (

1 − e− 2πω
h̄K

)∑
n

ne− 2πnω
h̄K

= (
1 − e− 2πω

h̄K
)(− h̄K

2π

)
∂

∂ω

(∑
n

e− 2πnω
h̄K

)

= (
1 − e− 2πω

h̄K
)(− h̄K

2π

)
∂

∂ω

(
1

1 − e− 2πω
h̄K

)

= 1

e
2πω
h̄K − 1

, (22)

where the trace is taken over all |n(R)
out〉 eigenstates. This is the Bose

distribution. Similar analysis for fermions leads to the Fermi distri-
bution:

〈n〉(fermion) = 1

e
2πω
h̄K + 1

. (23)

Note that both these distributions correspond to a black body spec-
trum with a temperature given by the Hawking expression,

T H = h̄K
. (24)
2π



Correspondingly, the Hawking flux can be obtained by integrat-
ing the above distribution functions over all ω’s. For fermions it
is given by

Flux = 1

π

∞∫
0

ωdω

e
2πω
h̄K + 1

= h̄2 K 2

48π
. (25)

Similarly, the Hawking flux for bosons can be calculated, leading
to the same answer.

4. Connection with usual approaches

For completeness and for revealing the connection with usual
approaches [4,5,8] to the tunneling formalism we will show below
how one can find only the Hawking temperature using the princi-
ple of detailed balance.

Since the left moving mode travels towards the center of the
black hole, its probability to go inside, as measured by an external
observer, is expected to be unity. This is easily seen by computing,

P (L) = ∣∣φ(L)

in

∣∣2 → ∣∣φ(L)
out

∣∣2 = 1, (26)

where we have used (13) to recast (φ(L))in in terms of (φ(L))out
since measurements are done by an outside observer. This shows
that the left moving (ingoing) mode is trapped inside the black
hole, as expected.

On the other hand, the right moving mode (φ(R)

in ) tunnels
through the event horizon. So to calculate the tunneling probability
as seen by an external observer one has to use the transformation
(13) to recast (φ(R))in in terms of (φ(R))out. Then we find

P (R) = ∣∣φ(R)

in

∣∣2 → ∣∣e− πω
h̄K

(
φ(R)

)
out

∣∣2 = e− 2πω
h̄K . (27)

Finally, using the principle of “detailed balance” [4,9], P (R) =
e
− ω

T H P (L) = e
− ω

T H and comparison with (27) immediately repro-
duces the Hawking temperature (24).

5. Conclusions

To conclude, we have provided a novel formulation of the tun-
neling formalism to highlight the role of coordinate systems. A par-
ticular feature of this reformulation is that explicit treatment of
the singularity in (7) is not required since we do not carry out the
complex path integration. Of course, the singularity at the event
horizon is manifested in the transformations (11). In this way our
formalism, contrary to the traditional approaches [4,5,8], avoids ex-
plicit complex path analysis. It is implicit only in the definition (7).
Computations were done in terms of the basic modes. From the
density matrix constructed from these modes we were able to
directly reproduce the black body spectrum, for either bosons or
fermions, from a black hole with a temperature corresponding to
the standard Hawking expression. We feel that the lack of such an
analysis was a gap in the existing tunneling formulations [4,5,8–12,
14] which yield only the temperature rather that the actual black
body spectrum. Finally, the connection of our approach with these
existing formulations was revealed through the use of the detailed
balance principle.

References

[1] S.W. Hawking, Commun. Math. Phys. 43 (1975) 199.
[2] G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15 (1977) 2752.
[3] S.M. Christensen, S.A. Fulling, Phys. Rev. D 15 (1977) 2088.
[4] K. Srinivasan, T. Padmanabhan, Phys. Rev. D 60 (1999) 024007, arXiv:gr-qc/

9812028.
[5] M.K. Parikh, F. Wilczek, Phys. Rev. Lett. 85 (2000) 5042, arXiv:hep-th/9907001.
[6] S.P. Robinson, F. Wilczek, Phys. Rev. Lett. 95 (2005) 011303, arXiv:gr-qc/

0502074.
[7] R. Banerjee, S. Kulkarni, Phys. Rev. D 77 (2008) 024018, arXiv:0707.2449;

R. Banerjee, S. Kulkarni, Phys. Lett. B 659 (2008) 827, arXiv:0709.3916;
R. Banerjee, Int. J. Mod. Phys. D 17 (2009) 2539, arXiv:0807.4637.

[8] M. Arzano, A.J.M. Medved, E.C. Vagenas, JHEP 0509 (2005) 037, arXiv:hep-th/
0505266;
E.T. Akhmedov, V.A. Akhmedova, D. Singleton, Phys. Lett. B 642 (2006) 124,
arXiv:hep-th/0608098;
M. Angheben, M. Nadalini, L. Vanzo, S. Zerbini, JHEP 0505 (2005) 014, arXiv:
hep-th/0503081;
R. Kerner, R.B. Mann, Phys. Rev. D 73 (2006) 104010, arXiv:gr-qc/0603019;
P. Mitra, Phys. Lett. B 648 (2007) 240, arXiv:hep-th/0611265;
R. Banerjee, B.R. Majhi, Phys. Lett. B 662 (2008) 62, arXiv:0801.0200;
R. Banerjee, B.R. Majhi, S. Samanta, Phys. Rev. D 77 (2008) 124035, arXiv:
0801.3583;
S.K. Modak, Phys. Lett. B 671 (2009) 167, arXiv:0807.0959.

[9] R. Banerjee, B.R. Majhi, JHEP 0806 (2008) 095, arXiv:0805.2220;
R. Banerjee, B.R. Majhi, Phys. Lett. B 674 (2009) 218, arXiv:0808.3688.

[10] R. Kerner, R.B. Mann, Class. Quantum Grav. 25 (2008) 095014, arXiv:0710.0612;
R. Kerner, R.B. Mann, Phys. Lett. B 665 (2008) 277, arXiv:0803.2246;
R. Criscienzo, L. Vanzo, Europhys. Lett. 82 (2008) 60001, arXiv:0803.0435;
D.-Y. Chen, Q.Q. Jiang, S.Z. Yang, X. Zu, Class. Quantum Grav. 25 (2008) 205022,
arXiv:0803.3248;
B.R. Majhi, Phys. Rev. D 79 (2009) 044005, arXiv:0809.1508.

[11] B.R. Majhi, S. Samanta, arXiv:0901.2258.
[12] V. Akhmedova, T. Pilling, A. Gill, D. Singleton, Phys. Lett. B 666 (2008) 269,

arXiv:0804.2289;
E.T. Akhmedov, T. Pilling, D. Singleton, Int. J. Mod. Phys. D 17 (2009) 2453,
arXiv:0805.2653;
V. Akhmedova, T. Pilling, A. Gill, D. Singleton, Phys. Lett. B 673 (2009) 227,
arXiv:0808.3413.

[13] A.K. Raychaudhuri, S. Banerji, A. Banerjee, General Relativity, Astrophysics, and
Cosmology, Springer, 2003.

[14] R. Banerjee, B.R. Majhi, Phys. Rev. D 79 (2009) 064024, arXiv:0812.0497.


	Hawking black body spectrum from tunneling mechanism
	Introduction
	General formulations
	Black body spectrum and Hawking flux
	Connection with usual approaches
	Conclusions
	References


